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The antiplane dynamic problem of electro-elasticity for a piezoelectric layer and half-layer containing 

curvilinear tunnel cuts along their bases is investigated. Integral representations of the solutions are 

constructed, by means of which the corresponding boundary value problems are reduced to a singular 

integro-differential equation in the jump in the amplitude of the displacement on the cuts. The asymptotic 

form of the combined mechanical and electric fields in the neighbourhood of singular points is investigated. 

The results of a numerical realization of the algorithm which enables the effect of the excitation frequency, 

the curvature of the cut (the crack), the type of boundary conditions and the effect of connectedness of the 

fields on the stress intensity factor Km are presented. 

1. CONSIDER a piezoelectric layer Odxr L a, - 00 <x2 < TV, - CQ <x3 < CC, weakened by tunnel cuts Lj 
(j=l, 2, . ..) k) along the x3 axis, referred to the crystallographic axes xl , x2, x3. We will 
conventionally assume that the piezoelectric material is a transversely isotropic material with an axis 
of symmetry parallel to the x3 axis (the crystal belongs to the 6mm hexagonal system, polarized in 
advance along the x3 axis of the piezoelectric material). 

We will assume that a monochromatic shear wave u3 co) = Re[ U,(O) (x1 , x2) exp (-id)] is radiated 
from infinity and it is possible for a shear load X3nf = Re[X,’ exp (--&)I, which varies harmonical- 
ly with time and is constant along the x3 axis, to act on the edges of the cuts while the bases of the 
layer are free from forces and are bounded by vacuum. We will assume that the curvatures of the 
contours Lj and the amplitudes Xs’ = -X3- = X3 are functions of the class H [l] on L = ULj and 
moreover f~ Ll = 0 (Fig. 1). 
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III this formulation, in the layer with cuts there will be combined mechanical and electromechan- 
ical fields corresponding to antiplane deformation. 

The complete system of equations has the form 

tvS==c4,%u,-e,&, lh==e&~~+e,,~E, (1.1) 
a,=a/ax, (%=I, 2) 

Here 113, lz3 and u3 are the shear stresses and the displacement along the x3 axis, El , E2, H3 and 
D, , D2 are the components of the electric and magnetic fields, respectively, and also of the electric 
induction vector, c44 E is the shear modulus, e15 is the piezoelectric constant, ~~~~ and l.~ are the 
permittivity and magnetic permeability of the medium, and p is the density of the material. The 
electric bounda~ conditions on the edges of the cuts are taken in the form [3] 

Ee +=Ea-, D,+=D,- (1.4) 

Here Es and D, are the tangential component of the electric field vector and the normal 
component of the electric induction vector, respectively. 

The boundary conditions on the bases of the layer can be written in the form 

t,s=O, D,=O (x,=0; a). WI 

Introducing the function 4, as given by 

E,-_-- “l; a+, + a,@, 
%, 

E, = - (l-6) 

we arrive at the equations 

v2u,---w- f 1 a2us - 0 p(D 1 aa* _-0 

-C,,2-@- 
&2 zz C41E (1 + xo2) 

Q ‘ca 
2- 

1 
2, G2 

_Ire,,s’ X0 
c44 E%P 

(1.7) 

In the quasi-static approximation (for not very large cuts) over a wide range of angular 
frequencies w we can assume that V2Q> = 0. By virtue of (1.1) and (1.6) we have 

w=c,~=(I+x~~)~,u~ -etsao@, D,=e,,Sa,cD 

tt~==c44E ( ~~%~2)~~~~+e,~d,~, D2=-e,,%4Q) u~a=us~o~+us* 

Here the quantity u3* represents the displacement field perturbed by the cuts. Assuming 

uS=Re [U,(s,, z&-‘“’ j, (P=Re (F(s,, r,)e-‘*’ f 
UI=(_13f@l+(JI*, uJt@=Te-i’lr”t, .p& 

we can represent the boundary conditions on the edges Lj in the form 

ca4E (1 + x02) { eiC (!f..!$)’ $. e--i@ (.?$)‘j _ 

-ie,,(d* (-$)*-e-i*(%)‘} =‘*X$ U-8) 
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[=g,+i&z, [=g,-ikl, cEIAjr [g]=g+-g- (j=l, 2. . . ., k) 

The upper sign relates to the left edge of Lj (for motion from its beginning ui to the end bj) and JI 
is the angle between the positive normal to the left edge and the OX, axis. 

2. The boundary-value problems (1.7) and (1.5) can be written in terms of the amplitudes 

\ zu,+~,YJ,=o; a,u,=o (x,=0; a) (2.1) 

L ‘F=O; d,F=O (x,-O; a) (2.2) 

We will expand Green’s function corresponding to problems (2.1), (2.2) in the form 

(2.3) 

L’E=G(s,-g,, .I-,--&). 6(z, j/)=6(x)6(y) 

where 6(x) is a 2a-periodic Dirac delta function. Using the expansions 

separating the variables in (2.1) and (2.2) and then using the procedure for determining the 
fundamental solution [4], we obtain 

(k=i, 2, . ..) 

The series for the function E in (2.3), by making use of the relation 
* 

c 

prlxl 
-cosmgc =+$In[2(chz-cow)] 

nc 1,,= 1 

is easily summed to give 

E (xl .- &, zs - Es) = & In 
I 
‘fn ‘ltn (’ - !)‘a 
mn Vsn (2; + 2)/a I 

(2.4) 

(2.5) 

(2.6) 

z=x,+ix,, Z-xl-ix, 

To separate the principal part of the function G we will write Green’s function G,, of the leading 
operator in the Holmholtz equation (2.3). Summing the corresponding series using (2.5) we obtain 
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Taking (2.4) and (2.7) into account, we can represent (2.3) in the following final form: 

(2.7) 

(2.8) 

(m-i, 2, *. .) 

Hence, the functions E and G defined in (2.6) and (2.8) are Green’s functions of the 
boundary-value problems (2.1) and (2.2) for a strip. The radiation condition for problem (2.1) and 
the attenuation condition for problem (2.2) are satisfied. After separating the principal part in (2.3), 
the general term of the series in (2.8) decays at the point z = 4 as mw3. 

3. Using the well-known reflection method [S], Green’s function constructed above for a layer can 
be generalized to the case of a half-layer (0 s x1 da, 0 QQ < CQ , - 00 <x3 < m). We will assume that 
the side bases of the half-layer are free from forces and are bounded by vacuum, while on the 
boundary x2 = 0 the following types of mechanical and electric conditions are possible: no forces, 
contact with vacuum 

T*s-‘O, D*=O (3.1) 

rigid clamping, and the boundary coated with an electrode and grounded 

up=O, E,=O (3.21 

It can be shown that Green’s functions in this case are given by (2.3) in which the coefficients bk 
and dk have the form 

Summing the corresponding series in (2.3) we obtain 

G* (x1, ;tr; kt Et) = G (21 - $1, z: - &) + A (&- &‘*(sa+Ed + 

+ xa + Et -&-I* 4th --sin 7 + 
I 

n(C+@ n(C-3 
2u I 

(3.3) 

(3.4) 
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Here the case A = -1 corresponds to a free half-Iayer bounded by vacuum and the case A = i 
corresponds to a clamped half-layer covered with a grounded electrode along_the boundary x, L=- 0. 
For A = 0 we arrive at formulas (2.6) and (2.8) for a Iayer. 

4. The displacement field U,* scattered by the cuts will be looked for in the form 

(4.1) 

Here the unknown quantity [US*] has the meaning of the jump in the displacement amplitude U,* 
on L and G” = G*(x, ,x2; -&, (2) is defined in (3.4). 

We will represent the function F as follows: 

F (219 ~4) = 
5 

f(6) E’b (4.2) 

where E* = E* (x1, x2 ; tl, &) is given in (3.4) and ds is an element of the arc of the contour L. 
To clarify the meaning of the density f in (4.2) we wil1 first calculate the derivatives aUS*/&, 

aV3*/az. As a result, after some reduction to improve the convergence of the corresponding series, 
we obtain 

&Tr,* ’ n 

az=xF s P (5) COS@C2 JI (5 - 4 
I& 4 t- s P (5) (R ,eilb f- R,e-i@)ds 

L L 

NY,* 
as==- & s p (5) cosec* IX (\; z) dc A- 1 p (5) (R,e’q’ + R,e-‘4’) ds, 

L L 

AIT 
R, = R, + 8a” cosec2 n (I; + 2) 2a -& [A, - R, - i (A, + Rx)1 

R,=-RR,-I’ -i&At + R, + i(Az---Bdl 

R,= - R,-Y --&[A, +4-iiA---k)l 

AlX 
R, = R, + m cosec2 Jr ci 4 2) 2a -&IA* -B,+ifAq+Rdl 

Y = & [ cosec2 at ‘\; ‘) + A cosw2 n (5; ‘) ] 

Ai= ~ 2 tn 
I 

(4.3) 
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OD 

+u ah. 
k=l 

_ hke-5klx2-Sd + A [ake-ak(x2+E4 _ hke-kk(x2CE2) I} x 

x cos akEl cos akzl 

fJ* = e-kkl%fftt _ ,-a,+:f&tl 

Calculating the limiting values of the functions (4.2) as z+ CO E L we obtain 

(4.4) 

Consequently, the last condition in (1.8) is satisfied automatically, while the penultimate 
condition, taking (4.3) and (4.4) into account, leads to the equations 

f (6) = 3 P’ (6)l 
dP a 

P’(6) = yg- (4.5) 

By substituting the limiting values of the function (4.3) and the derivatives aF/dz, dFl1.32 as 
z+ 5, E L into the mechanical boundary condition (1.8) on one of the edges of L and making use of 
relation (4.5), we arrive at the following singular integro-differential equation: 

5 p’ (cl R, (I;, Co) ds -t s P (5) ~2 (51 Lo) ds = iv (50) 

I, L 

g, (5, &J f In1 &a 
[ ( 

ct.g n(\;co) - x,2P 
11 

g2 (5, co) = 2 (i + xo2) [I#* (ei*RIo + e-i$H30) ‘+ 

_+ e-ill’0 (eN~,O + e-ioRIo)], N (50) = 3 + 2iY,T (1 + xo2) x 

(4.6) 

< s i n ~O(e-iv&Emeivk~O), p = ctg n (c + Co) + A & 
2a I_ J&-50) + 

2a 

_t_ctg Jc (f + 50) 
2a ’ I $0 = $ (50)~ 60 = El0 + it,, E Lj (j = 1,2,. . .,k) 

Here the kernel gl(& {0) is a singular (Hilbert type) kernel and 
assumptions regarding L, can possess not more than a weak 
R,O = I?,((, lo) are defined in (4.3). 

gz(5, Co), by virtue of the 
singularity; the functions 

To fix the solution in the class of functions with derivatives that are not bounded on the ends of L 
[l], it is necessary to add the following additional conditions to (4.6): . s p’(c)ds -= 0 (j = 1,2,. . ., k) (4.7) 

Lf 

5. Suppose that in the half-layer (the layer) there is one cut L, the parametric equation of which is 
5 = <(6)(-l <a< 1). We will represent the required density in the integro-differential equation 
(4.6) as follows: 

P’ (L) = 
Qo(Q 

s’ (6) v- ’ 
rr, (6) E H [- l,l], s’ (6) = g (5.1) 

An asymptotic analysis of representations (4.3) and the derivatives ~F/c~z, aF/dZ in the 
neighbourhood of the tip of the cut, taking (1.1) and (5.1) into account, enables us to obtain the 
stress intensity factor Km [6] in the form (the upper sign relates to the start of the cut and the lower 
sign to the end of the cut) 
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The asymptotic form of the normal component of the electric induction vector along the extension 
beyond the top of the cut is such that 

(5.3) 

where r is the distance to the tip. 
The remaining electromagnetic quantities are bounded. In fact, we have 

state (1.1) 
from the equations of 

(5.4) 

where D, is the normal component of the electric induction on the arc L’, as close to L as desired. 
Since [TV] = [&] = 0 and the determinant of system (5.4) is non-zero, we obtain [En] = 0. Hence, 
the electric field E is continuously extendable through the cut and therefore is continuous 
everywhere. 

6. The integro-differential equation (4.6), together with the additional condition (4.7), was 
reduced to a system of linear algebraic equations in the values of the functions rlze (6) at Chebyshev’s 
interpolation nodes using the procedure described in [7] for the case when the half-layer (PZT-4 
piezoelectric ceramics) contains a parabolic cut & = pa +pi 6, i$ = h +p2S2, 6 E [-1, 11. The 
approximate values of the function Qc were calculated for a number of nodes n = 9, 11 and 13, 
m = 9 terms were retained in this series. Any further increase in the parameters n and m hardly 
affected the accuracy of the results. 

Suppose X, = 0 (the edges of the cuts are free from forces), while an SH displacement wave is 
incident from infinity onto a rectilinear cut. The change in value of OL+ = cd&E 1 l&( 1) 1 /Tx3’m 
as a function of the normalized wave number rz*l = y$vI + x0*, a = 1 m (21 is the length of the 
cut) for h/a = pa/u = OS andprla = 0.2, is shown in Fig, 2. Curves 1 and 2 were drawn for values of 
the parameter A = 1 and - 1, respectively, and the continuous curves relate to the case of ceramics, 
while the dashed curves relate to the case where x = 0 (an isotropic material). Here Tzso is the 
modulus of the amplitude of the stress 723 in the incident wave. 

Knowing the quantities of cxT and 6’ = arg[fi(‘l)] we can determine the stress intensity factor 
Km from the formula 

lug, = “f T,O JG&’ ens (ot - 87) 

In Fig. 3 we show graphs of the quantity cy+ = cddEj a,(l) 1 /]XS / VW(l) as a function of the 

FIG. 2 
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FIG. 3. 

parameter r2*l for the case when there is no radiation from infinity, and a shear load (T = 0, 
Xs = const), which varies harmonically with time, acts on the edges of the cut. Curves 1 and 2 are 
drawn for the same parameters and the same correspondence as in Fig. 2; curve 3 relates to the 
value of the parameter p2/a = -0.1 (a curvilinear cut). 

The stress intensity factor was calculated in this case from the formula 

K III T=TiXtI~iLir eos(ot--6f) 
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